В Японии с громким успехом завершился физический эксперимент Токай — Камиока
Пучок нейтрино, созданный «Японским протонным ускорительным исследовательским комплексом» (Japan Proton Accelerator Research Complex, J-PARC), находящимся в деревне Токай, был направлен в детектор Super-Kamiokande, расположенный в удалённой от источника нейтрино на 295 км бывшей цинковой шахте Камиока на глубине 1 км.
Эксперимент стартовал довольно давно. Но из-за трагического землетрясения 2011 года и последовавших за ним событий собрать полную статистику удалось много позже запланированного. Тем не менее, ожидание того стоило. J-PARC разгонял протоны, сталкивая их с материалом мишени, что создавало в основном положительные пионы, распадавшиеся на антимюоны и мюонные нейтрино. Именно последние направлялись к Super-Kamiokande — ёмкости из нержавеющей стали, наполненной 50000 тоннами воды, на стенках которой находились 11146 фотоумножителей, регистрирующих различные типы нейтрино.
При этом за время эксперимента из прибывавших нейтрино 28 оказались не мюонными, а электронными — то есть с признаками превращения одного типа в другой буквально на лету.
Если бы эти нейтрино были случайностью, по всем расчётам их не могло быть более пяти, поэтому сейчас вероятность ошибочной регистрации осцилляции (спонтанного превращения нейтрино одного вида в другой) расценивается как меньшая, чем один к триллиону.
Предположения о возможности таких превращений, разумеется, уже делались в литературе, причём даже на основании некоторых опытов, но объём накопленных данных не позволял говорить об осцилляции как о физическом факте. «Теперь мы можем говорить об открытии», — уверен Дэвид Уорк (David Wark) из Научно-технологического совета Великобритании, один из участников эксперимента Токай — Камиока.
Итак, нейтрино трёх типов вполне могут спонтанно превращаться друг в друга. Данные детектора вполне недвусмысленно подтвердили гипотезу, выдвинутую Понтекорво 56 лет назад.
Открытие не только подтверждает гипотезу о возможности осцилляций, высказанную советским физиком Б.М. Понтекорво в 1957 году, но и окончательно закрывает проблему солнечных нейтрино, а именно то, что количество регистрируемых солнечных электронных нейтрино в два–три раза меньше, чем предсказывает стандартная солнечная модель современной физики.
Отчёт об исследовании представлен 19 июля на собрании Европейского физического общества в Стокгольме (Швеция), сообщает «Компьюлента».

Добавить комментарий